Продажа и обслуживание
вентиляционных систем
тепловых завес, кондиционеров
+7 (831) 260-13-60 8 800 550 49 16
Пн-Пт с 8:00 до 17:00 (МСК)
В выходные по договоренности
Перезвоните мне

Устройство, эксплуатация, применение однофазных двигателей

Трудно найти современное бытовое устройство, где бы не применялся однофазный двигатель. Они нашли широкое применение в самых различных бытовых решениях, поскольку являются идеальным источником образования вращающего момента там, где система электропитания представляет собой стандартную двухпроводную однофазную сеть.

Краткое описание конструкции

Однофазные двигатели по своей конструкционной идее достаточно просты. Чтобы было понятнее, будем рассматривать инженерное решение последовательно, крупными блоками и избежим погружения в физику переменного тока с его встречными полями и другими тонкостями.

Асинхронный двигатель состоит из двух главных деталей - ротора и статора. На них расположены обмотки, к которым подается напряжение. Обмотку статора можно представить как одно целое, подключаемое к двум контактам питания. В то время как на роторе всегда присутствует несколько обособленных обмоток.

Вращение вала ротора происходит из-за разницы направления электромагнитного поля ротора и статора, благодаря чему возникает движущая сила. К обмоткам ротора напряжение прикладывается последовательно, для чего служат токосъемные щетки и несколько пар контактов, расположенных на отдельном цилиндрическом секторе в зоне вала. Пуск двигателя и его дальнейшая работа в классическом, конденсаторном варианте, происходит следующим образом:

  • на статоре, кроме основной обмотки, присутствует маломощная пусковая, подключенная через конденсатор;
  • при начальной подаче напряжения обмотка статора и подключенная щетками обмотка ротора образовывали бы электромагнитные поля со встречными, четко геометрически совпадающими противоположными полюсами, без образования движущей силы. Но пусковая обмотка, подключенная через конденсатор, создает смещенное по фазе поле, которое и вызывает начальный импульс вращения;
  • после поворота ротора происходит переключение щетками контактов новой обмотки, которая уже не совпадает по направлению поля с характеристиками статора и образует основную движущую силу;
  • вращение продолжается, на роторе переключаются обмотки, пусковая обмотка статора отключается, продолжает работать только основная.

После отключения питания вращение ротора какое-то время продолжается по инерции и затухает. Скорость падения оборотов зависит от нагрузки на валу, а также общей массы ротора и показателей трения в соединениях двигателя. Чтобы увеличить коэффициент полезного действия, применяют качественные подшипники скольжения, которые практически не требуют обслуживания.

Какие тонкости конструирования позволяют добиваться нужных показателей работы двигателей

Количество энергии, которое двигатель может образовывать в виде крутящего момента, не зависит напрямую от характеристик потребляемой мощности. Если присмотреться к бытовым приборам, можно заметить, что двигатель кухонного миксера потребляет столько же мощности, сколько привод надежного и производительного сверлильного станка.

Но при этом миксер может поставить в тупик даже густое тесто, а станок не остановит даже полоса закаленной стали толщиной в несколько сантиметров. Все дело в количестве обмоток ротора и в их физических характеристиках, грубо говоря, в напряженности электромагнитного поля, которое они способны создать.

Двигатель миксера оперирует малыми величинами электродвижущей силы, а мотор станка при той же мощности обеспечивает на валу огромный момент благодаря большим показателям генерации внутренних магнитных полей.

В результате с помощью манипулирования характеристиками обмоток ротора и статора, инженеры могут создавать двигатели, которые будут способны выполнять поставленные задачи и одновременно иметь нужные габариты, чтобы компактно разместиться в корпусах разрабатываемых устройств.

Применение однофазных двигателей

Собственно, применение у электрического однофазного двигателя всего одно. Создавать вращающий момент на собственном валу. Задача остальных инженерных решений, которые применяются в различных устройствах - использовать данный вид энергии, с преобразованием или без, в целях, которые задумали инженеры для удовлетворения потребностей пользователя. Опишем кратко, как реализуются те или иные варианты прямого применения вращающего момента и его преобразования в разные формы движения и энергии.

Прямое применение

Самый простой и понятный пример прямого применения вращающего момента электродвигателя - современные вентиляторы. В идеале это всем знакомые изделия китайской промышленности - огромные лопасти, которые закреплены непосредственно на валу однофазного двигателя переменного тока.

Аналогичный принцип используется в бытовых устройствах повсеместно. Это вентиляторы бытовой техники, отвечающие за охлаждение, приводы лопастей тепловентиляторов и даже напольных охладителей - кондиционеров, использующих испарение жидкости на решетках в роли средства понижения температуры.

Преобразование с целью увеличение крутящего момента

Можно уверенно сказать, что в большинстве случаев в использовании однофазных электрических моторах применяются методики понижения количества оборотов на валу конечного исполнительного устройства. Это ведет к росту вращающего момента (развиваемого усилия), что с инженерной точки зрения имеет массу преимуществ:

  • на исполнительном устройстве в большинстве случаев не нужно такое большое количество оборотов, которое развивает вал двигателя;
  • при преобразовании происходит снижение нагрузки на мотор;
  • устройство развивает хороший момент, который при определенной мощности двигателя может обеспечиваться с отличными показателями стабильности при широких колебаниях нагрузки.

Говоря простым языком, дешевая китайская дрель, у которой преобразование оборотов минимально, просто заклинит при попытке пройти сверлом твердый или крайне вязкий и прочный материал. Та же по мощности качественная дрель, оснащенная механическим преобразователем, на сниженных оборотах легко справится с поставленной задачей.

Такой принцип преобразования момента позволяет инженерам минимизировать размеры двигателей или же гарантировать, что устройство справится с очень серьезными нагрузками.

Преобразование рода движения

Рассмотрим, что происходит в разного рода приборах, исполнительный орган которых совершает возвратно-поступательные движения. Все эти приборы приводятся в действие однофазным двигателем. Однако его вал передает движение либо кулачковому механизму, либо расположеному в центре круга, на краю которого в одной точке закреплен конец шатуна.

Работа кулачкового механизма может быть охарактеризована просто: усилие развивается в одном направлении движения исполнительного органа. Обратный ход обеспечивает либо еще один кулачковый механизм, что достаточно сложно в реализации, либо пружина. При работе шатуна двигатель отвечает за обе фазы возвратно-поступательного движения, что гарантирует полное использование мощности.

На таком принципе построено множество бытовых и промышленных механизмов. К примеру, массажеры с режимом вибрации, машинки для стрижки волос, электрические лобзики, швейные машины, компрессоры холодильников (в общем случае), уплотнители для бетона и многое другое.

Чем выгодны однофазные электрические двигатели

Прежде всего, однофазный электрический двигатель ценен простотой конструкции, отсутствием специального управления, а также возможностями тонкой регулировки как оборотов, так и скорости пуска. Поэтому с инженерной точки зрения такое устройство имеет массу преимуществ:

  • при стабильной нагрузке выделяет четко фиксированное количество тепла, что позволяет обеспечить режим охлаждения и безопасность работы;
  • с применением систем понижения оборотов возможно обеспечивать высокое усилие на конечном исполнительном органе и нивелировать броски нагрузки на валу двигателя;
  • массогабаритные показатели электромотора могут быть рассчитаны точно под выполнение конкретных задач, не перегружая и не создавая избыточную стоимость бытового или промышленного устройства;
  • применяя системы плавного пуска, можно добиться чрезвычайно долгой безаварийной работы однофазного двигателя переменного тока;
  • используемым в конструкции подшипникам качения не требуется специальное обслуживание;
  • однофазные двигатели ремонтопригодны благодаря простой конструкции.

Как следствие, покупая электродвигатель однофазного переменного тока, можно быть уверенным в его надежности и долговечности. Обеспечивая стабильные параметры входного напряжения, надлежащий режим охлаждения и не допуская перегрузок электромотора, можно не обслуживать его если не десятилетиями, то годами - наверняка.


Возврат к списку